
Using Profiles to Support Model
Transformations in the Model-Driven
Development of User Interfaces1

Nathalie Aquino1, Jean Vanderdonckt2, Francisco Valverde1, Oscar Pastor1

1Department of Information Systems and Computation, Valencia University of Technology,
Camino de Vera s/n. 46022 Valencia (Spain)
{naquino, fvalverde, opastor}@dsic.upv.es – http://oomethod.dsic.upv.es/
2Université catholique de Louvain, Louvain School of Management (LSM)
Place des Doyens, 1 – B-1348, Louvain-la-Neuve, Belgium
E-mail: jean.vanderdonckt@uclouvain.be - Web: http://www.isys.ucl.ac.be/bchi

Abstract The model-driven User Interface (UI) development life cycle usually
evolves from high-level models, which represent abstract UI concepts, to concrete
models, which are more related to the UI implementation details, until the final UI
is generated. This process is based on a set of model-to-model and model-to-code
transformations. Several industrial tools have applied this approach in order to
generate the UI. However, these model transformations are mainly fixed and are
not always the best solution for a specific UI. In this work, the notion of Trans-
formation Profile is introduced to better specify the model-to-model transforma-
tions. A Transformation Profile is made up of a set of predefined Model Mappings
and a Transformation Template. The mappings connect initial and target UI mod-
els in a flexible way, whereas the Transformation Template gathers high-level pa-
rameters to apply to the transformation. As a consequence, a Transformation Pro-
file enables designers to define parameterized transformations that could be reused
for another UI development project.

1 Introduction

The Cameleon Reference Framework [1] defines a MDE-compliant (Model-
Driven Engineering [13]) development life cycle for multi-target User Interfaces
(UIs) and structures it into four levels of abstraction: Task and Concepts to de-
scribe tasks and domain-oriented concepts; Abstract User Interface (AUI), to ex-
press a UI in terms of Abstract Interaction Objects (AIOs) in a way that is inde-
pendent from the interactors available in the targets; Concrete User Interface
(CUI), to concretize the AIOs of an AUI into Concrete Interaction Objects (CIOs)

1 This work has been developed with the support of MEC and MITyC under the projects

SESAMO (TIN2007-62894) and PISA (FIT-340000-2007-110).

2

which are independent from a specific toolkit; and Final User Interface (FIU), the
UI code in any programming or mark-up language.

This work focuses on the transformation from an AUI model to a CUI model.
On the one hand, there are approaches where transformation rules are implicit in
the transformation tools, resulting in a lack of flexibility to customize transforma-
tions [12,4]. On the other hand, typically there are similarities and differences
among UI development projects. Therefore, it is not a reasonable approach to de-
fine the transformation rules for the AUI to CUI model transformation each time
for each project, nor is it reasonable to use the same transformation rules for every
UI development project.

The main purpose of this work is to optimize AUI to CUI model transforma-
tions. To achieve this goal, Transformation Profiles are introduced as a mecha-
nism to externalize and customize the AUI to CUI model transformations and to
re-use knowledge between different UI development projects. A Transformation
Profile is composed of a set of Model Mappings and a Transformation Template.
The Model Mappings specify how to concretize an AIO into a CIO. Therefore, the
connections between the AUI model and the CUI model are externalized from the
tools that perform the transformations and can be customized according to com-
puting platforms and users. The Transformation Template parameterizes the trans-
formation with high-level parameters that can be applied in two dimensions: UI
fragments or UI patterns.

The rest of the paper is organized as follows: Section 2 presents Transforma-
tion Profiles, Model Mappings and Transformation Templates. Section 3 presents
a case study with a practical application of the Transformation Profile in the gen-
eration process of UIs in OO-Method, a software development method. In the case
study, the OO-Method Presentation Model plays the role of the AUI model, and
the UsiXML CUI Model plays the role of the CUI model. In Section 4, the AUI to
CUI model transformations of others MDE-compliant UI development methods
are analyzed. Finally, Section 5 presents some conclusion.

2 Introducing the Transformation Profile Approach

In a MDA-compliant (Model-Driven Architecture [9]) UI development process, an
AUI model is transformed to one or more CUI models. This transformation is
based on mappings from elements of the AUI model to elements of the CUI
model. The mapping problem has been defined as the difficulty of linking abstract
and concrete elements in a UI model. This problem has been identified by Puerta
and Eisenstein [12] as a non-trivial one. One of the main issues raised by the map-
ping problem is that, most of the time, the models and their mappings are hard-
coded in their supporting tools. As a consequence, they have limited flexibility for
modifications and customizations [4].

In order to solve these problems, this work introduces the Transformation Pro-
file concept. The Transformation Profile is intended to externalize the knowledge

3

of how to transform the AUI model to the CUI model. Fig. 1 illustrates the use of
a Transformation Profile. A Transformation engine takes as input an AUI Model
and a Transformation Profile. The Transformation Profile provides the rules that
specify how to transform the AUI to the CUI model. To organize the transforma-
tion knowledge, the Transformation Profile is structured in a set of Model Map-
pings and a Transformation Template. In other words, one Transformation Pro-
file = one set of Model Mappings + one Transformation Template.

The Transformation Profile approach provides flexibility for the modification
and customization of transformation rules, as well as interesting reusability poten-
tial.

Model Mappings and Transformation Templates are introduced in the follow-
ing subsections.

Fig. 1. AUI Model to CUI Model transformation using a Transformation Profile

2.1 Model Mappings

A mapping model is a well-known issue in the MDA of UIs. Puerta and Eisenstein
[12] presented a general framework to solve the mapping problem in model-based
UI development systems. Following the same line, Montero et al. [7] introduced a
formal definition of potential mappings among UsiXML models with its corre-
sponding syntax. UsiXML is a XML-compliant UI Description Language (UIDL)
that allows designers to apply a multi-directional development of UIs at multiple
levels of independence (http://www.usixml.org). In the UsiXML Mapping Model,
the isReifiedBy relationship indicates that a CIO is the reification of an AIO
through a transformation (see [7] for more details). This relationship has been
used in this work in order to define the model mappings.

Our Mapping Model is composed of relationships of reification type between
an AUI model and a CUI model. Each mapping is specified by one Source, zero or
more Conditions, one Target, and a Priority. The Source is an AIO of the AUI
model, the Target is a CIO of the CUI model. A graphical CUI model can repre-
sent a UI in terms of CIOs that can be containers (such as window, horizontalBox,
etc) or individual components (such as outputText, inputText, etc.) [15]. The con-

4

tainers can contain other containers or individual components defining a tree-like
structure. Therefore, the Target could be a CIO which is the root of a CIO tree. If
Conditions are specified, each of them must be satisfied in order to the Source be
reified in the Target. A Condition is a Boolean expression that can be specified
over elements of the AUI model. Finally, the Priority allows specifying the preva-
lence of some mappings over others. The Conditions and Priority constitutes ex-
tensions over the UsiXML Mapping Model.

To clarify the idea of the mappings, a simple textual example is given: let input
be an AIO that represents the input argument of a method of the domain model, let
horizontalBox be a concrete container, and let outputText and inputText be con-
crete individual components; the Mapping Model allows us to specify the reifica-
tion of the input into an horizontalBox that contains an outputText at the left and
an inputText at the right.

The Model Mappings allow the designer to specify widget selection and layout.
In addition, different Model Mappings can be defined to address different UI plat-
forms and end-user preferences.

2.2 Transformation Templates

In order to give more flexibility to the transformation from the AUI model to the
CUI model, a Transformation Template is used in conjunction with the set of
Model Mappings. A Transformation Template is composed of parameters that
specify how the CUI model and subsequent final UI are going to be structured
and/or stylized.

A model is composed of elements that have attributes with their corresponding
data types and values. Well-defined meta-models specify default values for the at-
tributes of their elements. The Transformation Template parameterizes the model
transformation with parameters that overwrite default values of attributes of CIOs
of a CUI model, e.g. style parameters like colours or font types.

High-level parameters, which are not directly related to a single attribute of an
element, can also be specified in a Transformation Template. These parameters
can be related to a group of attributes of one or more elements, or to the elements
themselves and relations among them. Several customizations can be achieved
with high-level parameters gathered in the Transformation Template. There can be
parameters for specifying the widgets to be used, the layout options, the dialog
style (e.g., by wizard or by tabbed dialog box), the location of objects (e.g., posi-
tion of a toolbar) or the alignment of elements (e.g. alignment of labels with re-
spect to their associated input elements). Furthermore, high-level parameters can
overwrite some of the mappings of the previously defined Model Mapping.

Each parameter is described by its name, set of possible values, default value,
and the elements where it is applied.

The scopes of application of the parameters can be specified in two dimen-
sions: UI fragments or UI patterns.

5

For the UI fragment dimension, the following scopes of application specify that
the parameter is applied to:

• Intra-application: all fragments of the application UI.
• Inter-container: all UI containers of a particular type (e.g., windows, dialog

boxes, tabbed dialog boxes, toolbars) within the application.
• Intra-container: all UI containers of a particular type with all their contained

UI fragments (e.g., images, icons, widgets) within the application.
• Inter-individual-component: all UI individual components of a particular type

(e.g., all buttons).

Some of the above categories can be combined to obtain more refined applica-
tions. For instance, by combining the inter-individual-component and inter-
container scopes, the parameter will be applied only to a particular type of UI in-
dividual component within a particular type of UI container (e.g., buttons of a dia-
log box).

For the UI pattern dimension, the following scopes of application specify that
the parameter is applied to:

• Inter-pattern: all UI patterns.
• Intra-pattern: a UI pattern of a specific type.
• Inter-sub-pattern: all UI sub-patterns of a specific UI pattern.
• Intra-sub-pattern: a specific UI sub-pattern of a particular UI pattern.

Once developed, a Transformation Template can be applied to a range of inter-
active applications, for instance, in order to ensure compliance with corporate
style guides or to make a family of applications consistent in their look and feel.
Besides, some of the parameters could be implemented in a user preference´s con-
figuration file in the final software product, so as to enable the final users to adapt
some aspects of the UI to their personal preferences (colours, font types, position
of windows, etc.) by means of a suitable editor. The adherence to style guides and
the adaptability affect the usability of a software product [3].

The use of high-level parameters and the combinations of their scopes of appli-
cation give a lot of flexibility and power to the notion of Transformation Profile.

3 Applying Transformations Profiles in the Generation
Process of User Interfaces in OO-Method: A Case Study

OO-Method [10] is a software development method that is MDA-compliant. It
uses models in order to specify the structural and functional aspects of information
systems. It also uses a Presentation Model (PM) [6] that is based on interface pat-
terns in order to specify the UI in an abstract way. OO-Method is supported by
OlivaNova - The Programming Machine (a commercial product of CARE Tech-
nologies – http://www.care-t.com/) that edits the various models involved and

6

automatically applies subsequent transformations until the final code of a fully
functional application (not limited to database or UI) is generated.

The first level of the OO-Method PM is made up of Interaction Units (IUs) that
represent the main interactive operations to be performed. One of the IUs is the
Service IU which is used for specifying the presentation of a service that modifies
an object, their attributes and relationships. The next level of decomposition of the
PM consists of restricting and specifying the behaviour of each IU using elemen-
tary patterns. In a Service IU the following elementary patterns, among others,
could be defined:

• Argument Grouping: enables the arrangement of input arguments of a service
in groups and subgroups, and establishes the order in which groups and input
arguments are shown to the user. An Argument Grouping element of type
group corresponds to a group of input arguments, while an Argument Grouping
element of type argument corresponds to one input argument.

• Defined Selection: enables the definition of a set of valid values and can be as-
sociated to an input argument.

• Introduction: allows the specification of edit masks, valid value ranges, and
help and validation messages, and can be associated to an input argument.

The application selected to illustrate the Transformation Profile approach is a
photography agency management system. Consider a Service IU, of the OO-
Method PM, to register photographers. In the registration process, the photogra-
phers must supply personal data: name, D.N.I., age, gender; and contact data: tele-
phone and e-mail. The Service IU is structured with two Argument Grouping ele-
ments of type group (Personal Data and Contact Data), which contains Argument
Grouping elements of type argument which are related to the input arguments of
the service (name, D.N.I., telephone, etc.). A Defined Selection pattern is used to
specify a set of valid values for gender: male and female; and an Introduction pat-
tern is used to define a valid value range for age (between 0 and 120). Fig. 2 re-
produces the described Service UI as generated by OlivaNova for a desktop plat-
form.

Fig. 2. UI generated by OlivaNova for the photographer registration example

7

It is important to note that the OO-Method PM corresponds to an abstract rep-
resentation of a UI without any details of the visual appearance. The OlivaNova
transformation engine generates the source code of the UIs from this model by ap-
plying transformation rules that are implicit in the tool. Therefore, if the final UI
does not satisfy the end-user´s requirements, manual modifications must be ap-
plied.

Pederiva et al. [11] introduced a Beautification Process for OO-Method in or-
der to address the shortcomings related to the generation of the UIs and manual
modifications. The first step of the process proposes to derive a CUI model from
the OO-Method PM. In the mentioned work, the UsiXML CUI model was se-
lected for this purpose.

A UsiXML CUI model consists of an abstraction of a final UI independently of
the particular widgets used in a specific computing platform, thus resulting in a
characterization of a UI in terms of CIOs. In this work, only graphical CIOs, such
as separator (a decorator), inputText (a graphical individual component), or win-
dow (a graphical container) are considered. Further details about the CIOs pro-
vided by UsiXML can be found at http://www.usixml.org/documentation/
usixml1.8.0/UsiXML.xsd.html.

The Transformation Profile approach could be introduced into the OO-Method
UI generation process to add flexibility to the PM to UsiXML CUI model trans-
formation. Fig. 3 illustrates the proposed evolution for the OO-Method UI genera-
tion process.

Fig. 3. OO-Method UI generation process: a) in its current state; b) as proposed in [11]; c)

using a Transformation Profile

Table 1 represents a subset of the Mapping Model that externalizes the map-
pings used by the OlivaNova compiler in the generation of the UI shown in Fig. 2.
The Source column represents an interface pattern from the OO-Method PM, the
Conditions column lists the conditions that must be satisfied for the mapping to be

8

applied, and the Target column shows the UsiXML CUI Model transformation re-
sult.

Table 1 presents the mappings in ascendant order of priority, so that, for exam-
ple, an ArgumentGrouping of type argument, related to an input argument of type
integer or string, which has a Defined Selection associated, will be mapped to a
comboBox.

Table 1. Mapping Model (subset) for PM to UsiXML CUI Model transformation

Source Conditions Target
Service IU window that contains a borderBox which

encloses a topBox and a bottomBox. The
topBox contains a vertical-oriented box.
The bottomBox contains a right-aligned
flowBox with OK and Cancel buttons

Argument Grouping type is
group

groupBox Argument Grouping

Argument Grouping type is ar-
gument and Argument Grouping
is related to a string or integer
input argument

horizontal-oriented box that contains an
outputText and an inputText

Defined Selection comboBox
Introduction inputText

The default mappings provided by OlivaNova are enough from a functional
point of view but do not always meet the customer’s requirements. To solve this
problem, an alternate Transformation Profile could be applied. Table 2 represents
a subset of an alternate Mapping Model that allows Service IUs with more than
one Argument Grouping element of type group to be displayed like a wizard. This
option can be useful when several input arguments must be entered and the user
need only focus on one arguments group. Furthermore, the Defined Selection pat-
tern is mapped to a radioButton, and the Introduction pattern of type integer that
specifies a valid values range is mapped to a spin. Table 2 presents the mappings
in ascendant order of priority.

In order to provide a better customized UI, the alternate Transformation Profile
includes a Transformation Template, which is represented in Table 3. The Trans-
formation Template defines font properties (textFont and isItalic) and a vertical
alignment of the labels for all the UI fragments of the application. The labelA-
lignment is a high-level parameter that overwrites the mapping number 4 of Table
2. Furthermore, visual and font properties are specified for all the containers of
type window, and all the individual components of type button.

9

Table 2. Alternate Mapping Model (subset) for PM to UsiXML CUI Model transformation

Source Conditions Target Mapping
Number

Service IU Service IU does not have
Argument Grouping ele-
ments of type group

window that contains a borderBox
which encloses a topBox and a bot-
tomBox. The topBox contains a
groupBox. The bottomBox contains a
right-aligned flowBox with OK and
Cancel buttons.

1

Argument Grouping type
is group and the Argument
Grouping is the last group
of a Service IU

window that contains a borderBox
which encloses a topBox and a bot-
tomBox. The topBox contains a
groupBox. The bottomBox contains a
right-aligned flowBox with OK and
Cancel buttons

2

Argument Grouping type
is group and the Argument
Grouping is not the last
group of a Service IU

window that contains a borderBox
which encloses a topBox and a bot-
tomBox. The topBox contains a
groupBox. The bottomBox contains a
right-aligned flowBox with Next and
Cancel buttons.

3

Argument Grouping

Argument Grouping type
is argument and Argument
Grouping is related to a
string or integer input ar-
gument

horizontal-oriented box that contains
an outputText and an inputText

4

Defined Selection radioButton 5
Introduction Introduction type is inte-

ger and Introduction
specifies a valid value
range

spin 6

Table 3. Transformation Template (subset) for PM to UsiXML CUI Model transformation

Parameter
name

Parameter
value

Scope of application (UI
fragment)

Container to
apply

Individual component
to apply

textFont Times New
Roman

intra-application all all

isItalic yes intra-application all all
labelAlignment vertical intra-application all all
bgColor C2EADD inter-container all windows none
isBold Yes inter-individual-

component
none all buttons

textFont Arial inter-individual-
component

none all buttons

The Transformation Profile, which is composed of the Mapping Model and the

Transformation Template presented in Tables 2 and 3, could be an input for the

10

Model Compiler so as to generate a UsiXML CUI model from which the final UI
could be generated according to the required changes. This approach enables the
designer to choose the most suitable Transformation Profile for a concrete UI de-
velopment. In addition, a Transformation Profile repository can be created to reuse
previously defined UI specifications. Fig. 4 represents the UI which could be ob-
tained if the new Transformation Profile is applied.

Fig. 4. Expected UI applying the alternate Transformation Profile

4 Related Work

The approach described in this paper is original since it combines a set of Model
Mappings and a Transformation Template in a single Transformation Profile to
support transformations that are tailored to each application.

Some software tools support a transformation-based approach for generating a
UI (e.g., Teallach [2], TERESA [8]), but the transformations are not made explicit
and, therefore, they cannot be edited or parameterized. In particular, MOBI-D [12]
and Mastermind [14] cannot be considered as genuine transformation approaches
since only the models are explicit: the transformations are not explicit and there is
no true transformation engine. Mastermind is based on a rule-based approach
while MOBI-D directly generates code from the models. TransformiXML [5] does
support explicit transformations since it interprets mappings written in UsiXML
and converts them into graph transformations. Although these transformations are
explicit, and therefore can be edited, they cannot be conditioned, prioritized nor
parameterized, which limits their flexibility. In TransformiXML, the designers
themselves must enter new transformation options, which is a complex process re-
served to specialists, as opposed to parameterizing existing transformations thanks
to their parameters. This tailoring process is much more affordable to designers.

There are also other software tools that support a template-based approach, but
they are restricted to only modifying the values of some widget properties. For in-
stance, Genova (http://www.esito.no/) gathers predefined values of UI properties,
like colour, font, and style, in a template that is then applied to a UI. Our approach
generalizes the notion of template to high-level parameters and also handles the
notion of UI pattern, which, as far as we know, does not exist in similar works.

11

When comparing the Transformation Template with Cascading Style Sheets
(CSS) [16], we can say that while CSS is a mechanism for adding style to Web
documents, the Transformation Template is thought to be used in a MDE-
compliant UI development life cycle in order to specify, not only the style, but
also the structure of UIs for different computing platforms (desktop, web, mobile).
Furthermore, parameters of the Transformation Template can be associated to UI
patterns besides UI containers or individual components.

To the best of our knowledge, no existing work today provides both a trans-
formation-based approach (e.g., based on Model Mappings) and a template-based
approach (e.g., based on Transformation Templates) in a single and unified way of
developing UIs. This combination enables us to combine the powerfulness of the
first approach with the flexibility of the second.

5 Conclusion

To summarize, the contribution of this paper is twofold:

1. From the conceptual viewpoint, it has introduced the notion of Transformation
Profile, which consists of a Transformation Template and a set of Model Map-
pings to be applied during the model-to-model transformation steps in MDE of
UIs. The Transformation Profile externalizes the transformation rules and
makes them editable, customizable and reusable. The Model Mappings can be
conditioned and prioritized. With regard to the Transformation Template, the
different application dimensions (UI fragments and UI patterns) allow design-
ers to apply the parameters in the same way as the selector does in CSS. Since
the Transformation Profile is independent of the underlying models, nothing
prevents its reuse in any other work in MDE of UIs. In principle, the Transfor-
mation Profile notion could be used in any model-to-model transformation or
model-to-code compilation.

2. From the methodological viewpoint, this approach has been incorporated in
OO-Method, which is a MDE method for automatically generating an entire in-
teractive system (and not just the UI).

Nowadays, the hardest challenge consists of identifying the parts of the tools to
be expanded when new parameters need to be incorporated. A new abstraction
could be included in the model editor, but this would affect the high-level model-
ling activity and may introduce unnecessary levels of detail at this step. A new pa-
rameter could be inserted in the various transformation steps, but this would
largely affect the transformation engine implementation. Therefore, we think that
the easiest solution is to introduce a Profile during the transformations themselves.
Of course, this still affects the model-to-code compiler, but only in a way that
augments its capabilities in an incremental way.

Therefore, the most important shortcoming of this approach relies in its imple-
mentation cost. Even though this cost is relatively high this approach allows de-
signers to apply the Transformation Profile to tailor the MDE process to end-users

12

needs. End-users love to specify their own needs and really appreciate seeing them
incorporated in the MDE process, as opposed to a traditional MDE process where
all the transformations are predefined and leads to a predetermined UI.

References

1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and Vanderdonckt, J. A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puters 15,3 (2003) 289–308

2. Griffiths, T., Barclay, P., Paton, N.W., McKirdy, J., Kennedy, J., Gray, P.D., Cooper, R.,
Goble, C., and Pinheiro da Silva, P.: Teallach: a Model-based User Interface Development
Environment for Object Databases. Interacting with Computers 14, 1 (2001) 31–68

3. ISO/IEC 9126-1 (2001) Software engineering - Product quality - Part 1: Quality model
4. Limbourg, Q., Vanderdonckt, J., Addressing the Mapping Problem in User Interface Design

with UsiXML. In: Proc. of 3rd Int. Workshop on Task Models and Diagrams for user inter-
face design TAMODIA2004 (Prague, November 15-16, 2004), Palanque P, Slavick P,
Winckler M (eds.). ACM Press, New York (2004) pp. 155–163

5. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., López-Jaquero, V.: UsiXML: a
Language Supporting Multi-Path Development of User Interfaces. In: Proc. of 9th IFIP Engi-
neering Human Interaction and Interactive Systems EHCI-DSVIS’2004 (Hamburg, July 11-
13, 2004). Lecture Notes in Comp. Science, Vol. 3425, Springer, Berlin (2005) pp. 200-220

6. Molina, P.J., Meliá, S., Pastor, O.: JUST-UI: A User Interface Specification Model. In: Proc.
of 4th Int. Conf. on Computer-Aided Design of User Interfaces CADUI2002 (Valenciennes,
May 2002). Kluwer Academic Press, Dordrecht (2002) pp. 63–74

7. Montero, F., López-Jaquero, V., Vanderdonckt, J., González, P., Lozano, M. and Limbourg,
Q. Solving the Mapping Problem in User Interface Design by Seamless Integration in
IdealXML. In: Proc. of 12th Int. Workshop on Design, Specification and Verification of In-
teractive Systems DSV-IS2005 (Newcastle upon Tyne, 13-15 July 2005), Harrison M (ed.).
Lecture Notes in Computer Science, Vol. 3941. Springer, Berlin (2005) pp. 161–172

8. Mori, G., Paternó, F., Santoro, C.: Design and Development of Multi-device User Interfaces
through Multiple Logical Descriptions. IEEE Trans. on Soft. Engineering 28(8) 507–520

9. Object Management Group, MDA Guide Version 1.0.1, 2003. http://www.omg.org/docs/
omg/03-06-01.pdf. Accessed 25 January 2008

10. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. A Software Production En-
vironment Based on Conceptual Modeling. Springer, New York (2007)

11. Pederiva, I., Vanderdonckt, J., España, S., Panach, I., Pastor, O.: The Beautification Process
in Model-Driven Engineering of User Interfaces. In: Proc. of 11th IFIP TC 13 Int. Conf. on
Human-Computer Interaction INTERACT2007 (Rio de Janeiro, September 10-14, 2007).
Lecture Notes in Computer Science, Vol. 4662. Springer, Berlin (2005) pp. 409–422

12. Puerta, A.R., Eisenstein, J.: Towards a General Computational Framework for Model-Based
Interface Development Systems. Knowledge-based Systems 12 (1999) 433–442

13. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39, 2 (2006) 41–47
14. Szekely, P., Sukaviriya, N., Castells, P., Muthukumarasamy, J., Salcher, E.: Declarative In-

terface Models for User Interface Construction Tools: The MASTERMIND Approach. In:
Proc. of 6th IFIP Int. Conf. on Engineering of Human-Computer Interaction EHCI’95 (Yel-
lowstone, August 1995). Chapman & Hall, London (1996) pp. 120–150

15. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Proc. of 17th Conf. on Advanced Information Systems Engineering
CAiSE'05 (Porto, 13-17 June 2005). Lecture Notes in Computer Science, Vol. 3520.
Springer, Berlin (2005) pp. 16–31

16. World Wide Web Consortium (2007) Cascading Style Sheets Level 2 Revision 1 (CSS 2.1)
Specification. http://www.w3.org/TR/CSS21/. Accessed 28 April 2008.

