
 - 121 -

OpenInterface: A Lightweight Open Source Platform for
Rapid Prototyping of Multimodal Applications

Jean-Yves Lionel Lawson1, Jean Vanderdonckt2, Benoît Macq1

1Communications and Remote Sensing Laboratory (TELE)
2Belgian Lab. of Computer-Human Interaction (BCHI)

 Université catholique de Louvain (UCL), Belgium
{jean-yves.lawson, jean.vanderdonckt, benoit.macq}@uclouvain.be

ABSTRACT
In this paper we present the OpenInterface Kernel as part
of an open source platform for supporting the effective
prototyping of multimodal interactive applications. Mul-
timodal Interactive applications are based on the assembly
of several components, namely, various and sometimes
interchangeable modalities at the input, fusion-fission
components and also several modalities at the output. It-
erative design of such a system requires the easy integra-
tion, replacement or upgrade of components and the pos-
sibility to derive interaction properties from the compo-
nent and basic ergonomic properties for the global sys-
tem. We have designed a thin communication kernel able
to manage this in an easy way by providing the research
community a mean to solve a gap in the current support
for multimodal applications implementation: OpenInter-
face Kernel is a practical light way to assemble various
modalities with different implementation language, keep-
ing a high level of performance of the assembled system.
The effective connection of components requires their
parsing in order to extract their communication features.
Further parsing could be used to extract high level inter-
action properties. A running example illustrates the dy-
namic and extensible aspects of the platform. It runs on
several operating systems and allows fast integration of
interaction devices, signal processing tools, domain-
independent data fusion, and dynamic runtime connection
and re-configuration of interaction modalities.
ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces – Prototyping; user-
centered design. D2.2 [Software Engineering]: Design
Tools and Techniques – Modules and interfaces; user in-
terfaces. D2.m [Software Engineering]: Miscellaneous –
Rapid Prototyping; reusable software.

General terms: Design, Experimentation, Verification.

Keywords: Prototyping, component-based architecture,
reusable software component, multimodal interfaces, mul-
timodal software architecture, integration techniques.

INTRODUCTION
Theoretical studies have highlighted the main issues at the
development level of multimodal applications: content se-
lection (“what to say”), modality allocation (“which mo-
dality to use to say it”), modality realization (“how to say

it in that modality”) and modality combination [22]. Cri-
teria and requirements for the implementation of multi-
modal interactive systems are given in [34]; a precise way
exists for describing, analyzing, and reasoning about mul-
timodal systems prior to their implementation [29].

Currently, there is little research aimed at filling the gap
between the design&specification stage and the imple-
mentation process of a functional system. There are exist-
ing solutions such as [9,13,28] for designing and imple-
menting a multimodal system. They are limited, however,
in the sense that they either present a small or hardly ex-
tensible number of input devices, they are platform and
technology dependent or they do not provide a flexible
prototyping environment for a large and heterogeneous
number of research products, such as new devices proto-
type, new algorithms, etc. Prototyping is an important
phase of multimodal application development process, as
it allows designers to tackle the main issues presented
above in an iterative fashion. A designer can plug and
play with modalities, combine them, and quickly reuse
the work done in a previous stage with little knowledge in
low level programming. There is no software solution that
presently provides this fast multimodal interaction proto-
typing feature.

In this paper we briefly present (Section 2) existing solu-
tions for the design and implementation of multimodal
applications by focusing on the dynamic and extensible
aspects of the presented tools. Section 3 provides an
overview of the OpenInterface Platform, an open source
cross-platform software designed to support fast prototyp-
ing and implementation of interactive multimodal sys-
tems. Section 4 illustrates the platform’s dynamic features
by realizing a simple multimodal application taking ad-
vantage of our platform functionalities.

RELATED WORK
There are several toolkits for investigating the design of
multimodal applications. A few are listed here, and their
main shortcomings are highlighted.

ICON
ICON [13] is an input toolkit that allows interactive ap-
plications to achieve a high level of input adaptability. It
is implemented in Java and natively supports few input
devices. Devices can be added to the toolkit, but it re-

In Faure, D., Vanderdonckt, J., (Eds.), Proc. of 1st Int. Workshop on User Interface Extensible Markup Language UsiXML’2010 (Ber-
lin, 20 June 2010), Thales Research and Technology France, Paris, 2010. ISBN 978-2-9536757-0-2

 - 122 -

quires a great amount of programming using JNI.

ICARE
ICARE [6] is also a component-based platform for build-
ing multimodal applications. This solution defines a new
component model based on Java Beans, and requires all
components to be in java. The platform is hard to extend,
produces non-reusable components and also requires a lot
of programming for integrating new devices or features.

CrossWeaver
CrossWeaver is a user interface designer's application for
planning a multimodal application. It allows the designer
to informally prototype multimodal user interfaces. This
prototyping tool supports a limited number of input and
output modalities and is not suitable for integrating addi-
tional software components.

QuickSet
QuickSet [9] mainly focuses on multimodality applied to
the development of map-based systems. It uses speech
and pen-based gesture as interaction modalities. The ex-
tension mechanism uses the Open Agent Architecture
[10].

Max/MSP and PureData
Max/MSP [23] is a graphical environment for music, au-
dio, and multimedia; PureData [30] is its open source
counterpart. Both software provide a great number of de-
sign tools, are extensible and have a large community of
users including performers, composers, artists, teachers,
and students. The extension mechanisms, however, re-
quire low level programming in C and it is not possible to
use the platforms without the graphical environment.

Most of the solutions listed above requires commitment to
a given technology or supports a limited number of inter-
action modalities like voice, pen, text, and mouse, and are
designed for specific interaction paradigms.

Our approach is different in the sense that we aim at
providing a flexible solution for fast prototyping of mul-
timodal applications by the easy and extensive reuse of
existing software and technologies. The rationale for
OpenInterface Platform Kernel (Figure 1) is therefore to
be a generic platform for integrating heterogeneous code
(device drivers, applications, algorithms, etc.) in a single
software in a non intrusive fashion and with minimal pro-
gramming effort. To support the design, implementation
and reasoning on multimodal applications it will provide
tools for composing, testing and debugging generated
prototypes.

OPENINTERFACE PLATFORM

Requirements
Cross-platform, Heterogeneity, Reusability, Extensibility,
and Performance
A major requirement of the platform is the ability to en-
hance and enforce the reusability of work previously
achieved while implementing/prototyping new multimod-
al systems.

 Since the platform is intended for fast prototyping of new
interaction models, it should also be easy to integrate and
test immature signal processing research software like
speech, gesture recognition – mostly implemented in high
level prototyping languages such as Matlab, Python or
scripting programming languages – as well as stable
commercial devices provided with a low level API in
C/C++ and graphical user interface software written in
Java, Tcl/Tk, etc. To achieve good runtime performance
of interactive systems, the platform must have good re-
sponse time, despite the heterogeneous nature of the mul-
timodal application being prototyped. One of the major
differences between our approach and ICON is summa-
rized by the heterogeneity requirement. It will be indeed a
major advantage when it will come to rapidly integrate
software and prototype interactions.

Multimodal Integration Support
Another important concept in multimodal application de-
sign and implementation is modality integration, or fu-
sion. Two types of integration can be performed on mo-
dalities: feature fusion and semantic fusion. OpenInter-
face only implements domain independent fusion. Feature
fusion is low level, domain-specific and performed be-
tween tightly coupled modalities (e.g. lips movement and
speech), while semantic fusion is mostly high-level, pref-
erably domain-dependent, and more related to the syn-
chronization of time scale characteristics. Six basic types
of cooperation between modalities are defined by [22]:
Complementarity, Redundancy, Equivalence, Specializa-
tion, Concurrency and Transfer. A similar generic set of
domain-independent combination of input modalities is

Figure 1. Multimodal Application Development Using
the OpenInterface Platform.

 - 123 -

summarized in [12] where four roles are presented: Com-
plementarity, Assignment, Redundancy, and Equivalence.

From a software point of view, all these generic roles can
be expressed by a combination of simple data flow con-
trol operations. For instance, Complementarity can be
implemented by temporal data synchronization, Assign-
ment and Specialization by direct procedure call, Redun-
dancy by connecting several modalities to the same func-
tional module, etc. To facilitate the implementation of a
functional multimodal system, the platform should embed
a set of domain-independent fusion mechanisms but also
offer a framework for adding new generic or tailored mo-
dality combination.

Plug and Play
Finally, our system should provide the ability to easily
build a multimodal application by requiring as little pro-
gramming effort as possible. Modalities, or software inte-
grated within OpenInterface, should be easily assembled
together in a plug and play fashion. This would allow for
the creation of a network of components managing an ad-
vanced multimodal task, and provide the prototyping di-
mension to the system. Thus, the designers or program-
mers will then be able to quickly verify their model or
specifications. The platform should therefore come with a
significant set of application connectors, filters, debug-
ging tools to ease the quick construction of an interactive
multimodal system. An additional requirement is to not
commit to a communication paradigm (event-based, pro-
cedure call, etc.), but rather provide tools capable of im-
plementing the desired behavior. It will allow the plat-
form to easily integrate with other software solutions.

Design
Heterogeneous Components
To achieve the reusability requirement, the platform
adopts an extensible modular architecture where compo-
nents are the base objects manipulated by the OpenInter-
face Platform. Our approach is very different from [6] in
the sense that we do not define a new component model
and we strive for minimal programming efforts when in-
tegrating new components. By not specifying an explicit
model, it allows for flexibility by having the ability to im-
plement a large set of models for multimodality. Addi-
tionally, at the implementation level, it enables communi-
cation with existing component models implementation
like CORBA [11], EJB [15], and OSGi [28]. Components
are unaware of the platform in which they are running;
therefore, programmers use their preferred programming
language and tools to build their piece of code, only de-
claring interfaces. Within our system, a component is only
characterized by its interface and is defined as a reusable
and independent software unit with exported and import-
ed Input/Output interfaces. This definition is intentionally
broad enough to encapsulate all models when implement-
ing a multimodal system. Thus, a component must simply
be software with the following mandatory attributes:

1. API (Application Programming Interface): there must
be a way to communicate with the component services.

2. Installation/configuration: to facilitate the installation
and configuration, the component should be packaged
appropriately.

3. Documentation: the component must be well docu-
mented to enhance reusability.

4. No explicit dependencies with other components: a
component must not make assumptions on the platform
or other components existence or features. All required
features must either be declared as imported, or pack-
aged within the component.

Figure 2. Component, OpenInterface view of any kind

of external software.

OpenInterface provides tools to help producing such
components. Figure 2 illustrates our view of a component
as a bundled piece of software that provides a set of ser-
vices/functionalities (Facets) which include input device
drivers, signal-processing algorithms, fusion, fission,
network communications, graphical interfaces, etc. These
facets have well defined input/output interfaces called
Pins. A pin can be a Sink (used to receive data), a Source
(used to retrieve data from a component) or a Callback
used to send data (and to import external functionalities
into a component).

Pipelines
To build a running application, we introduce the concept
of Pipeline as an interconnection and configuration of
components as illustrated in Figure 3. It allows control
over the components lifecycle and execution site (remote,
local), and provides high level (threshold, filter, etc.) and
low level (multicast, synchronization, etc.) data flow con-
trols for building up a complex system.

Figure 3. OpenInterface Pipeline.

 - 124 -

Adapters/Connectors
Easily assembling components with a pipeline can only
be done efficiently if the platform provides an extensible
set of integrators which capture and mediate the commu-
nication between components. We use the concepts of
Adapters/Connectors as entities that mediate interactions
among components; that is, they establish the rules that
govern component interaction and specify any auxiliary
mechanism required [31]. Four categories fully describe
the range of possible component interactions [24]: Com-
munication, Coordination, Conversion and Facilitation.

In the platform, adapters/connectors are similar to com-
ponents, with the difference being that their interface can
either be generic or pre-defined. A generic interface can
be connected to any components regardless of their inter-
faces, and Communication (TCP, RPC, etc.) and Coordi-
nation (Barrier, Synchronization, etc.) connectors fall into
that category. Tailored connectors with well defined inter-
faces are called adapters in the platform, as they primarily
serve the role of data conversion and facilitation.

Connectors are defined and designed so that they also in-
clude the definition of modality coordination, fusion.
They are the basic tools for implementing semantic fusion
(at the level defined by [22] and [12]) and communication
paradigm (event-based, remote procedure call, pipe, etc.)
within the platform.

Implementation
Heterogeneous Component Integration
Having components declare only their communication in-
terface enforces the requirement for «independence». A
component exports inputs/outputs to provide functionali-
ties/services (display an image, device status, etc.) and
imports inputs/outputs to request a feature provided by
other components.

We have defined a description language called CIDL
(Component Interface Description Language) that pro-
vides a way for components to declare their interface no
matter the language in which they are written. The CIDL
is semi-automatically generated from source code and is
required by the OpenInterface Platform for manipulating
a component. Figure 4 illustrates the syntax of the de-
scription language.

Once the CIDL description of the component has been
made the platform actually generates code to encapsulate
provided binaries into a well defined programming inter-
face, Figure 5 illustrates that process. The encapsulated
components can then be easily reused in any OpenInter-
face platform application in a plug and play fashion by
using the pipeline description language presented in the
following section.

Component Composition
A pipeline defines and configures connections between
components and is described using the PDCL (Pipeline
Description and Configuration Language [21]).

Figure 5. Heterogeneous Integration, Overview.

It provides simple embedded dataflow controls, such as
direct function call and asynchronous call, but also ex-

Figure 4. OpenInterface CIDL, Simplified Description
(bottom) of a C/C++ Mouse Component (top).

 - 125 -

poses a simple but powerful extension mechanism for ex-
tending the pipeline expressivity to simplify as much as
possible intuitive interaction implementation. Currently,
advanced flow control such as multicast (publisher/sub-
scriber), Complementarity and Redundancy/Equivalence
modalities fusion (temporal synchronization), data trans-
formation like range filtering, rescaling, smoothing, etc.
are distributed with the platform.

Overview
We have implemented the OpenInterface Kernel in C++
to achieve maximum performance, and also because most
of the languages have C++ bindings. This allowed us to
provide a portable platform capable of integrating hetero-
geneous software in a single application. An overview of
how the platform works is illustrated by Figure 1, where
each component is registered into the OpenInterface Plat-
form using the Component Interface Description Lan-
guage (CIDL). The platform then automatically generates
proxies to perform the actual integration. Using an editor
or the Kernel API, the user can edit the components prop-
erties and compose the execution pipeline (by connecting
the components) of the multimodal application. This exe-
cution pipeline is either interpreted at once by the kernel
or dynamically built by the application. More details on
architecture and implementation can be found in [26].
According to the presented overview, the platform use
can be decomposed into two main steps:

1. Integrate new modalities, devices, functional cores, i.e.
components into the platform. The software can be
provided in any of the supported programming lan-
guages (C/C++, Java, Matlab and .NET; more exten-
sions can easily be added). This integration phase is
well documented, and semi-automatic tools are provid-
ed to ease that process. It is usually performed by mo-
dality providers, i.e. programmers.

2. Use the pipeline interface to combine components and
generate a running application. Currently there are two
ways of using the pipeline:

 Control the platform from the final application us-
ing the provided API and bindings. The API is in
C++, but bindings for a large set of languages can
be generated using the SWIG [4] wrapper. Java
bindings are provided with the default installation
as an example.

 Use a development environment plugged to the
platform. Currently there is one graphical editor,
the OpenInterface Interaction Development Envi-
ronment [16] (SKEMMI) which is a graphical tool,
built on top of the platform, for the iterative design
of a multimodal application. This tool is still in its
alpha development phase, but is already available
for download and evaluation.

This section presented the requirements, design, specifi-
cation and implementataion of the OpenInterface Kernel.
We have stated that having such a tool as an implementa-

tion base for various models of multimodality shortens
the development phase and provides better multimodal
applications, thanks to a high rate of implementation re-
finement using prototypes. In the next section we demon-
strate the dynamic functionalities of the OpenInterface
platform with the construction of a simple multimodal
music player prototype by reusing existing open source
components.

DESIGNING A PROTOTYPE
In this part we prototype an application to provide the
ability of navigating in a multimodal way through an
MP3 collection and select a song for playback. Figure 6
illustrates a simple open source CD case image collection
viewer [25] which has no other function than displaying a
set of images in an aesthetically pleasing layout.

Figure 6. Java Music Shelf, a simple album art viewer.

For this application, we have integrated the following
components inside the platform:

 A command-based MP3 player written in Java
based on the JLayer library [18]

 A simple gauge level written in C# [8]

We also reused the following already integrated compo-
nents:

 A Wii remote control (Wiimote) component
which provides the device state (accelerometer,
button, speaker and infrared points tracking) [35]

The integration process of existing code is fast and
straight forward. It is thoroughly described in the plat-
form online documentation.

First Iteration
In this first prototype, we build a pipeline as illustrated in
Figure 7.

Figure 7. First Iteration of the Multimodal Music

Player, Simple control with Wiimote.

 - 126 -

The command-based Java mp3 player is the main applica-
tion and has two interfaces for controlling the playback of
a song (Event) and modifying the volume level (SetVol-
ume). To provide an attractive graphical feedback to the
user, the Music Shelf application (Figure 6) is used to
display album art for each song, and a visual feedback for
the volume level will be implemented by the meter level
gauge (Figure 8). To control all of these visual compo-
nents, we wanted to experiment with the Wii remote con-
trol. It is a powerful interaction device that comes with an
integrated accelerometer, infra-red dots tracking capabili-
ties, and several action buttons.

Figure 8. C# Meter Gauge Level for volume control

visual feeback.

Task Model

Figure 9. Multimodal Music Player Task Model.

Figure 9 illustrates the task model of our application
where the user should be able to navigate through a col-
lection of songs, select a song for playback, control the
volume, and stop the playback.

Pipeline Implementation
Table 1 summarizes the event-action mapping we will
perform to implement our task model.

Events Actions

B Button pressed Start a song playback

A Button pressed Connect the Wiimote to the CD
Shelf

+ Button pressed Connect the Wiimote to the vol-
ume level control

- Button pressed Disconnect the Wiimote

Acceleration (X) Navigate through the songs col-
lection or Increase/Decrease the
volume

Table 1. Event-Action Mapping for the Multimodal
MP3 Player

Applying that mapping at runtime, gives the user the op-
tion to disconnect the Wiimote from the application or
connect it (Button A) to the CDShelf component to navi-
gate through the image or connect it to the volume level
control (Button +). The SKEMMI can be used to generate
the runtime configuration of our application, as illustrated
by Figure 10.

Figure 10. Design of the first iteration within SKEMMI.

 - 127 -

Figure 11. Selection of projects built with OpenInterface.

(a) First prototype, Image navigation; (b) Integration within MedicalStudio; (c) Hypovigilance state detection using a
multimodal driver simulator; (d) InterpiXML integration; (f) 3D Game on Nokia N95 testbed.

 - 128 -

The application can also be generated on the fly using the
runtime API. This last solution is useful when the final
prototype has to be a standalone application, therefore not
relying on a graphical editor to compose connections.

In this first iteration, the accelerometer is too sensitive
and triggers many events. To reduce the noise, we simply
use a threshold connector between the Wiimote and the
CDShelf component. The filter then only sends an event
when its value (acceleration) is outside a predefined
range; in this case we use [-200, 200]. This simple exam-
ple has illustrated how easy it is to integrate modalities
and combine them in a single application. The power of
the OpenInterface Platform is demonstrated here in the
sense that the Wiimote can easily be replaced by any
combination of interaction devices and modalities.

In the next section, we describe some applications de-
signed and implemented using the OpenInterface Plat-
form, and give a short overview of the growing and easily
extensible component database.

APPLICATIONS
The OpenInterface Platform has been used, and is being
used, in several research projects for successfully design-
ing, prototyping, and implementing multimodal applica-
tions. Some of them are described below:

Multimodal Driving Simulator
The OpenInterface platform was first used at eNTER-
FACE05 [14] a four-week workshop organized by the
SIMILAR European Network of Excellence, aiming at es-
tablishing a tradition of collaborative, localized research
and development work by gathering, in a single place, a
group of senior project leaders, researchers, and (under-
graduate) students, working together on a pre-specified
list of challenges.The platform was still in its alpha state,
being used as the backbone of a multimodal driver simu-
lator [5], and working as the integration platform for
combining the driver state based on video data (e.g., faci-
al expression, head movement, eye tracking) and multi-
modal input. The setup of this application is illustrated by
Figure 11 (c).

MedicalStudio
MedicalStudio [33] is a composable, open source and eas-
ily evolvable cross-platform framework that supports sur-
gical planning and intra-operative guidance with aug-
mented interactions. It is designed to integrate the whole
computer aided surgery process to which both researchers
and clinicians participate. OpenInterface has been used as
an integration platform to study speech and marker detec-
tion interaction for 3D objects manipulation as illustrated
by Figure 11 (b).

UsiXML Interpreter
UsiXML [35] (which stands for USer Interface eXtensi-
ble Markup Language) is a XML-compliant markup lan-
guage that describes the UI for multiple contexts of use
such as Character User Interfaces (CUIs), Graphical User
Interfaces (GUIs), Auditory User Interfaces, and Multi-

modal User Interfaces. InterpiXML is a runtime interpret-
er for UsiXML files and supported a limited number of
modalities. The interpreter has been integrated as a com-
ponent inside within OpenInterface so that it could use
the platform as a runtime environment for controlling and
combining a larger set of modalities. Figure 11 (d) illus-
trates a usability case study conducted using the described
configuration.

Multimedia Information retrieval
The IRMA project [17] aims at designing and developing
a modular, customized, efficient, protected and economi-
cally viable interface for multimodal searching and
browsing in indexed audiovisual databases. The platform
is being used for investigating multimodal interaction for
navigating in a large set of multimedia data including an-
notated video, sound, and text. Figure 11 (e) represents a
multimodal video viewer controlled with finger gesture
and voice. The finger interaction modality has been im-
plemented using infra red dot tracking.

OpenInterface Project
The OpenInterface Project [27] is an ongoing European
IST Framework 6 Specific Targeted Research Project
funded by the European Commission. It promises:

1. To ground the development of multimodal interactive
systems in a scientific understanding of multimodal in-
teraction. In our case, this will be achieved through re-
usable software components in the platform that are di-
rectly defined from theoretical results on multimodali-
ty.

2. To provide a tool for implementing a truly iterative us-
er-centered design process.

3. To turn the results into industrial standards by way of
the platform.

Several demonstrators have been implemented, including
a multimodal map navigation and a mobile multimodal
game. A typical setup for the latter is illustrated by Figure
11(e) where the game runs on a mobile phone (Nokia
N95), while the different interaction modalities are run-
ning within the platform on a PC. This configuration has
allowed Arcadia Design [3] designers to investigate dif-
ferent modalities to control their game: speech com-
mands, 3D gesture commands with the Shake [36] and 3D
gesture commands with ARToolkit [1] have been tested
so far.

Component Database
Figure 12 synthesizes the current state of the platform
component database and Figure 13 presents the database
of connectors that can be used to compose components.
The presented components are highly reusable and come
from the various projects involved in OpenInterface. Tai-
lored components, such as complete applications (games,
functional cores, etc.) have not been listed because of
their limited reusability in the field of application design.

 - 129 -

Figure 12. Overview of the OpenInterface Connect-

or Database.

Figure 13. Example of components currently integrat-

ed and available from OpenInterface component
database.

The database is already well furnished in input devices
and a large number of combinations could be prototyped
for studying new interactions. It also highlights the lack
of output devices and interaction techniques; this provides
us hints for future work, and directions to explore when
designing innovative interaction modalities. This database
is available from https://forge.openinterface.org. Specific
licensing scheme may apply to each component, depend-
ing on the original binary used to perform the integration.

CONCLUSION AND FUTURE WORK
Going from a multimodal application design to a running
implementation is not a simple task due to the lack of
tools supporting this process. We have presented a
runtime platform, the OpenInterface Kernel, which ena-
bles easy reuse of existing work to iteratively design and
build a multimodal system with minimal programming ef-
fort. We have briefly illustrated the process of building a
dynamic multimodal application – an MP3 player applica-
tion controlled with the Wii remote control– by reusing
existing open source software. The platform, as presented
here, is available for download as an open source plat-
form from https://forge.openinterface.org. Currently,
there is one graphical front-end to the kernel, the
SKEMMI – OpenInterface Interaction Development En-
vironment – which focuses more on the designer view
when developing multimodal application. However, the
modular approach followed by the kernel allows it to be
interfaced by any kind of front-end application which can
output XML description. We have already successfully
tested integration PureData and ICARE; in the near future
we will investigate the integration of the platform within
solutions like CrossWeaver, ICON and with existing open
source interactive applications workflow editors such as
EyesWeb [7] and Clam Network Editor [2]. Our focus is
also directed toward enriching the platform with a com-
prehensive set of tools that will allow us to automatically
generate multimodal interface prototype from high level
description languages like UsiXML [35] or UIML [1] of
interactions which is abstract from a particular implemen-
tation and allows to integrate basic rules of usability in
the iterative design process.

ACKNOWLEDGMENTS
The work on the OpenInterface platform was partly fund-
ed by the European FP6 SIMILAR Network of Excel-
lence (www.similar.cc) and is now mainly funded by the
European FP6-35182 OpenInterface (www.oi-strep.com).
J. Vanderdonckt also acknowledges the support of the
Région Wallonne for ITEA2 Call 3 UsiXML project, un-
der reference 2008026.

REFERENCES
1. Abrams, M., Phanouriou, C., Batongbacal, A.L., Wil-

liams, S.M., Shuster, J.E. UIML: An Appliance-
Independent XML User Interface Language. Comput-
er Networks 31,11-16 (1999), 1695–1708.

2. Amatriain, X., Arumi, P., Garcia, D. 2006. CLAM: a
framework for efficient and rapid development of
cross-platform audio applications. In Proc. of ACM
Multimedia’2006 (Oct. 23-27, 2006). ACM Press,
New York, pp. 951–954.

3. Arcadia Design, www.arcadiadesign.it
4. Beazley, D.M. SWIG: an easy to use tool for integrat-

ing scripting languages with C and C++. In Proc. of
the 4th Conf. on USENIX Tcl/Tk Workshop (July 10 -
13, 1996, Monterey, CA). USENIX Assoc., Berkeley,
1996, 15.

 - 130 -

5. Benoit, A., Bonnaud, L., Caplier, A., Damousis, I.,
Tzovaras, D., Jourde, E., Nigay, L., Serrano, M., Law-
son, J-Y. Multimodal Signal Processing and Interac-
tion for a Driving Simulation: Component-based Ar-
chitecture. J. on Multimodal User Interfaces 1, 1
(2007), 49–58.

6. Bouchet, J., Nigay, L. ICARE: A Component-Based
Approach for the Design and Development of Multi-
modal Interfaces. In Extended Proc. of CHI’04 (April
2004, Vienna). ACM, NY, 2004, pp. 1325–1328.

7. Camurri, A., Ricchetti, M., Trocca, R. EyesWeb - to-
ward gesture and affect recognition in dance/music in-
teractive systems. In Proc. of IEEE Multimedia Sys-
tems '99 (June 1999, Firenze). IEEE Comp. Press, Los
Alamitos, 1999.

8. CodeProject, www.codeproject.com
9. Cohen, P.R., Johnston, M., McGee, D., Oviatt, S.,

Pittman, J., Smith, I., Chen, L., Clow, J. QuickSet:
multimodal interaction for distributed applications. In
Proc. of ACM Multimedia’97, 1997, pp. 31–40.

10. Cohen, P.R., Cheyer, A.J., Wang, M., Baeg, S.C. An
Open Agent Architecture. In Proc. of AAAI Spring
Symposium (March 1994). AAAI (1994), pp. 1–8.

11. Common Object Request Broker Architecture,
www.corba.org

12. Coutaz, J. Nigay, L. Salber, D. Blandford, A., May, J.
Young, R. Four Easy Pieces for Assessing the Usabil-
ity of Multimodal in Interaction the CARE Properties.
In Proc. of IFIP Interact'95. IOS Press (1995) pp.
115–120.

13. Dragicevic P. and Fekete J-D. Input Device Selection
and Interaction Configuration with ICON. In A. Blan-
ford, J. Vanderdonkt, P. Gray (eds.), Joint proceed-
ings of IHM 2001 and HCI 2001 (IHM-HCI'01).
Springer Verlag, London, 2001, pp 543-558.

14. eNTERFACE Workshops, http://www.enterface.net/
15. Enterprise JavaBeans Technology. http://java.sun.

com/products/ejb
16. Gray, P., Ramsay, A., Serrano, M. (2007). A Demon-

stration of the OpenInterface Interaction Development
Environment. In Adjunct Proc. of UIST’07. ACM
Press, New York, pp. 39-40.

17. IRMA: Interface de Recherche Multimodale en conte-
nu Audiovisuel, http://www.irmaproject.net

18. JLayer, MP3 library for the Java Platform. http://
www.javazoom.net/javalayer/javalayer.html

19. Kato, H., Billinghurst, M. (1999) Marker Tracking
and HMD Calibration for a video-based Augmented
Reality Conferencing System. In Proc.of the 2nd Int.
Workshop on Augmented Reality IWAR’99 (October
1999, San Francisco)

20. Katsurada, K., Sato, K., Adachi, A., Yamada, H. and
Nitta, T. 2005. A Rapid Prototyping Tool for Con-
structing Web-based MMI Applications. In Proc. of
INTERSPEECH2005, pp.1861-1864.

21. Lawson, J-Y., 2006. Openinterface description lan-
guages specification. Technical report, TELE-UCL,

2006. Available online: http://www.openinterface.org/
platform/documentation

22. Martin, J. C., TYCOON: Theoretical Framework and
Software Tools for Multimodal Interfaces. In Intelli-
gence and Multimodality in Multimedia Interfaces,
AAAI Press, 1997.

23. Max/MSP. Available on-line at: http://www.cycling
74.com/products/maxmsp

24. Mehta, N. R., Medvidovic, N., and Phadke, S. 2000.
Towards a taxonomy of software connectors. In Proc.
of the 22nd Int. Conf. on Software Engineering
ICSE’2000 (Limerick, June 4-11, 2000). ACM Press,
New York, pp. 178-187.

25. Music Shelf in Java2D, Available on-line at: http://
www.jroller.com/gfx/entry/a_music_shelf_in_java2d

26. OpenInterface Association, www.openinterface.org
27. OpenInterface European project. IST Framework 6

STREP funded by the European Commission (FP6-
35182). www.oiproject.org.

28. OSGi Alliance. www.osgi.org
29. Palanque, Ph. and Schyn, A. 2003. A Model-Based

Approach for Engineering Multimodal Interactive
Systems. In Proc. of IFIP TC 13 Int. Conf. on Human-
Computer Interaction INTERACT’03 (Zurich, 2003)
p. 543.

30. Puckette, M. 1996. Pure Data: another integrated
computer music environment. In Proc. the 2nd Inter-
college Computer Music Concerts, Tachikawa, pp. 37-
41

31. Shaw, M. and Garlan, D. Software Architecture: Per-
spectives on an Emerging Discipline. Prentice-Hall,
1996.

32. Sinha, A.K., Landay, J.A. Capturing user tests in a
multimodal, multidevice informal prototyping tool. In
Proc. of the 5th Int. Conf. on Multimodal Interfaces
ICMI’2003 (Vancouver, November 5-7, 2003). ACM
Press, New York, pp. 117-124.

33. Trevisan, Daniela G.; Nicolas, Vincent; Macq, Benoit;
NEDEL, Luciana P. MedicalStudio: a medical com-
ponent-based framework. In Proc.of Workshop de
Imagens Médicas WIM’2007 (Recife, 2007). Anais do
Workshop de Imagens Médicas (em CD), 2007.

34. UIMS Tool Developers Workshop. A Metamodel for
the Runtime Architecture of an Interactive System.
SIGCHI Bulletin, 24(1), January 1992, pp32-37.

35. Vanderdonckt, J. Model-Driven Engineering of User
Interfaces: Promises, Successes, and Failures. In Proc.
of 5th Annual Romanian Conf. on Human-Computer
Interaction ROCHI’2008 (Iasi, September 18-19,
2008), S. Buraga, I. Juvina (eds.). Matrix ROM, Bu-
carest, 2008, pp. 1–10.

36. Wiiuse, The wiimote C library. www.wiiuse.net
37. Williamson, J., Murray-Smith, R., and Hughes, S.

2007. Shoogle: Excitatory Multimodal Interaction on
Mobile Devices. In Proc CHI '07. ACM Press, New
York, pp. 121-124.

