
 An Open Source Workbench for Prototyping Multimodal

Interactions Based on Off-The-Shelf Heterogeneous

Components

ABSTRACT
In this paper we present an extensible software workbench for

supporting the effective and dynamic prototyping of multimodal

interactive systems. We hypothesize the construction of such

applications to be based on the assembly of several components,

namely various and sometimes interchangeable modalities at the

input, fusion-fission components, and also several modalities at

the output. Successful realization of advanced interactions can

benefit from early prototyping and the iterative implementation

of design requires the easy integration, combination,

replacement, or upgrade of components. We have designed and

implemented a thin integration platform able to manage these

key elements, and thus provide the research community a tool to

bridge the gap of the current support for multimodal applications

implementation. The platform is included within a workbench

offering visual editors, non-intrusive tools, components and

techniques to assemble various modalities provided in different

implementation technologies, while keeping a high level of

performance of the integrated system.

Categories and Subjects Descriptors
 H5.2 [Information interfaces and presentation]: User Interfaces.

– Prototyping. D2.2 [Software Engineering]: Design Tools and

Techniques – Modules and interfaces; user interfaces. D2.m

[Software Engineering]: Miscellaneous – Rapid Prototyping;

reusable software.

General terms
Design, Experimentation, Human Factors, Verification

Keywords: Prototyping, component-based architecture,

reusable software component, multimodal interfaces, multimodal

software architecture

1. INTRODUCTION
There is currently few ready-to-use software solutions aimed at

filling the gap between the design & specification stage and the

implementation process of a functional system. Seminal works

present tools for the iterative design of multimodal systems

[24][4][6], however, they either (1) present a small or hardly

extensible number of input devices, (2) they are platform and

technology dependent, or (3) they do not provide a flexible

prototyping environment for a large and heterogeneous number of

research products (such as new device prototypes, new

algorithms, etc.). More recent works focus either on hardware

prototyping [11] or are designed for targeted interaction

techniques [18].

Prototyping is an important phase of the multimodal application

development process, as it allows designers to address complex

issues in an iterative fashion. A designer can plug and play with

modalities, i.e. easily combining them, and reusing the work

done in previous stages with little low-level programming

knowledge.

Our goal is to provide an evolvable software solution

implementing a device-independent, interaction technique and

programming model-independent multimodal interaction

prototyping feature.

In this paper, we first present existing solutions for the design

and implementation of multimodal applications by focusing on

the heterogeneous and extensible aspects of the presented tools.

We then provide a short overview of the OpenInterface Platform

[13], which is an open-source platform-independent software

solution designed to support fast prototyping and implementation

of interactive multimodal systems. The dedicated graphical front-

end, SKEMMI, to the runtime platform is then motivated and

presented. We continue giving an overview of applications

successfully developed using OpenInterface and we conclude

with discussion and future work.

2. RELATED WORK
There are several toolkits for investigating multimodal

application design. A selection of well-known seminal platforms

is listed here, and we highlight shortcomings that OpenInterface

aims to overcome.

ICON
ICON [6] is a java input toolkit that allows interactive

applications to achieve a high level of input adaptability. It

natively supports several input devices. Devices can be added to

the toolkit using JNI, the low-level Java Native Interface

allowing integration with programs written in C.

Jean-Yves Lionel Lawson
1
, Ahmad-Amr Al-Akkad

3
, Jean Vanderdonckt

2
, Benoît Macq

1

1
Communications and Remote Sensing Laboratory (TELE)

2
Belgian Lab. of Computer-Human Interaction (BCHI)
 Université catholique de Louvain (UCL), Belgium

{firstname.lastname}@uclouvain.be

3
Fraunhofer FIT

Schloss Birlinghoven,53754 Sankt Augustin,Germany
{firstname.lastname}@fit.fraunhofer.de

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

EICS’09, July15–17, 2009, Pittsburgh, Pennsylvania, USA.

Copyright 2009 ACM 978-1-60558-600-7/09/07...$5.00.

245

ICARE
ICARE [2] is a component-based platform for building

multimodal applications. This solution defines a new component

model based on Java Beans, and requires all components to be

written in java. The platform is not easily extensible, produces

non-reusable components, and also requires additional

programming effort for integrating new devices or features.

CrossWeaver
CrossWeaver [24] is a user interface design tool for planning

multimodal applications. It allows the designer to informally

prototype multimodal user interfaces. This prototyping tool

supports a limited number of input and output modalities and is

not suitable for integrating additional software components.

Max/MSP and Pure Data
Max/MSP [17] is a graphical environment for music, audio, and

multimedia; Pure Data [21] is its open-source counterpart. Both

provide a large number of design tools, are extensible, and have

a large community of users including performers, composers,

artists, teachers, and students. The extension mechanisms,

however, require low level programming in C, and it is not

possible to embed the platforms in external applications.

Exemplar
The goal of Exemplar [10] is to enable users to focus on design

thinking (how the interaction should work) rather than algorithm

tinkering (how the sensor signal processing works). Exemplar

frames the design of sensor-based interactions as the activity of

performing the actions that the sensor should recognize. This

work provides an Eclipse based authoring environment which

offers direct manipulation of live sensor data.

Most of the solutions listed above require commitment to a

specific technology (e.g. programming language, device toolkit),

or support a limited number of interaction modalities such as

voice, pen, text, and mouse, and are designed for specific

interaction paradigms. Moreover none provides a reusable

framework for experimenting with various type of software

component without the burden of complete re-implementation to

match a chosen runtime technology.

Our approach differs from the above as it focuses on providing an

interaction-independent, device and technology independent

flexible solution for the fast prototyping of multimodal

applications through the facilitation and reuse of existing

software and technologies. To leverage the features of our

solution, we also look into the problem of how to support

different stakeholders to achieve better collaboration while

designing interactive multimodal systems in an ongoing complex

design process.

We provide two base tools, OpenInterface Kernel as a generic

runtime platform for integrating heterogeneous code (e.g. device

drivers, applications, algorithms, etc.) by means of non-intrusive

techniques and with minimal programming effort, while

achieving exploitable runtime performances (e.g. low latency,

low memory overhead). SKEMMI is the provided design front-

end. It supports a multi-level interaction design and allows

composition and modification of running applications through

techniques such as design-by-demonstration or direct

manipulation.

3. RUNTIME PLATFORM
In this section we give an overview of the design and

implementation details of the underlying runtime prototyping

platform.

3.1. Heterogeneous Components
The platform adopts an extensible modular architecture in which

components are the base objects manipulated by the

OpenInterface Platform. Components can be implemented in

virtually any language, we do not constrain to the use of a

component model, and we strive for minimal programming

efforts when integrating new components. Therefore, not

specifying an explicit model provides additional flexibility, i.e.

the ability to implement/support various models for interactive

systems (e.g. MVC, PAC, ARCH, etc.). Components are

unaware of the platform in which they are running; therefore,

programmers can use any preferred programming language and

external tools, while only declaring interfaces.

Within the system, a component is only characterized by its

interface and is defined as a reusable and independent software

unit with exported and imported Input/Output interfaces. This

definition is intentionally broad enough to encapsulate a large

number of models when implementing a multimodal system. In

other words, components are only specified by the following

mandatory attributes:

1. API (Application Programming Interface): to communicate

with the component services.

2. Installation/configuration: to facilitate the installation and

configuration, the component should be packaged

appropriately.

3. Documentation: the component must be well documented to

enhance reusability.

4. No dependencies with other components: a component must

not make assumptions about the platform or features of other

components. All required features must either be declared as

imported, or packaged within the component.

Figure 1 illustrates our view of a component as a bundled piece

of software that provides a set of services/functionalities (Facets)

which include input device drivers, signal-processing algorithms,

fusion, fission, network communications, and graphical

interfaces. These facets have well defined input/output interfaces

called Pins. A pin can be a Sink (used to receive data), a Source

(used to retrieve data from a component), or a Callback used to

send data (and to import external functionalities into a

component).

Figure 1: Component, OpenInterface view of any kind of

external software.

246

We use a code generation technique to provide a non-intrusive

integration platform with minimum programming overhead,

while achieving good runtime performance. The integration of

heterogeneous software is done by (1) describing all components

communication interfaces in a language and platform-

independent manner, and (2) by generating proxies to

encapsulate original components implementation.

Having components declare only their communication interface

enforces the requirement of ‗independence‘. A component

exports inputs and outputs to provide functionalities and services

(e.g. image display, device status), while it imports

inputs/outputs to request features provided by other components.

In order to declare interfaces, regardless of their implementation

language, we define the XML-based CIDL description language

(Component Interface Description Language - see [14] for more

details) illustrated in Figure 2. CIDL code is semi-automatically

generated from source code, and is required by the OpenInterface

platform for manipulating components. The architecture of the

system allows integrating other description languages such as

WSDL [27]. Once the CIDL description of the component has

been produced, the platform generates C++ code to encapsulate

external binaries into a well defined programming interface, as

illustrated in Figure 3. The encapsulated components can then

be easily reused in any OpenInterface platform application in a

plug and play fashion by using the pipeline description language

presented in the following section.

3.2. Pipelines
In order to build a running application, we introduce the concept

of Pipeline as an interconnection and configuration of

components as illustrated in Figure 4. It allows control over the

components life-cycle and execution site (remote, local), and

provides low level (threshold, filter, etc.) and high level

(multicast, synchronization, etc.) data flow control for building

up a complex systems. A pipeline also supports dynamic

reconfiguration of connections at runtime.

A pipeline thus defines and configures connections between

components using the PDCL (Pipeline Description and

Configuration Language – see [14] for more details). It provides

simple embedded dataflow controls, such as direct function calls

and asynchronous calls, as well as simple mechanisms for

extending the pipeline‘s expressiveness in order to simplify

intuitive interaction implementation. Currently, advanced flow

control, such as multicast (publisher/subscriber),

Complementarity and Redundancy/Equivalence modality fusion

(temporal synchronization), and data transformation such as

range filtering, rescaling, smoothing, thresholding, etc. are

distributed within the platform. The pipeline also allows

isolating component in separate processes or distributing the

execution of an assembly over a set of computers running an

instance of OpenInterface Kernel. The distribution can either be

performed seamlessly using the PDCL syntax or with connectors

implementing well known protocol.

Figure 2: OpenInterface CIDL, Simplified Description

(bottom) of a C/C++ Mouse Component (top).

Figure 4: OpenInterface Pipeline

Figure 3: Overview of Heterogeneous Components

Integration within OpenInterface

247

3.3. Adapters/Connectors
Easily assembling components with a pipeline can only be done

efficiently if the platform provides an extensible set of

integrators which capture and mediate the communication

between components. We use the concepts of

Adapters/Connectors as entities that mediate interactions among

components; that is, they establish the rules that govern

component interaction and specify any required auxiliary

mechanism [23]. Four categories fully describe the range of

possible component interactions [19]: Communication,

Coordination, Conversion, and Facilitation.

In the platform, adapters/connectors are similar to components,

with the difference being that their interface can either be

generic or pre-defined. A generic interface can be connected to

any component regardless of its interfaces, communication (e.g.

TCP, RPC) and coordination (e.g. Barrier, Synchronization)

connectors fall into that category. Tailored connectors with well

defined interfaces are called adapters, as they primarily serve the

role of data conversion and facilitation.

They are the basic tools for implementing fusion (at the level

defined by [16] and [5]) and communication paradigms (event-

based, remote procedure call, pipe, etc.) within the platform.

Although basic fusion is supported by the kernel, the

mechanisms are not sufficient (without reengineering of involved

components) to perform complex high level semantic fusion. In

this aim, the platform is being extended with an advanced

framework [26] for managing high level data fusion.

In this section, we have briefly presented the design,

specification, and implementation of the OpenInterface Kernel.

We believe that such a platform enables rapid experimentation

with heterogeneous code and used in conjunction with high level

graphical interface allows significant implementation refinement

using multiple prototypes. In the next part we present the design

platform, built on top of the kernel to leverage its runtime

features in efficient multimodal application design and

implementation.

4. DESIGN PLATFORM
During our preliminary experience with multimodal application

development, we have recognized that these applications

represent complex artifacts and their development requires the

expertise of both interaction design and software engineering

domain. In a first approach we evaluated OIDE [8], a design tool

presented as a development environment for multimodal

interaction built on top of OpenInterface runtime platform. We

have encountered a couple of shortcomings while using OIDE

and more generally during the whole application design phase:

Limited Focus
The first main difficulty is that component developers rather

focus on designing their individual components than the

application as a whole. Therefore each implemented application

version exposes an inflexible design, i.e. hardly flexible

assemblies of components.

Inflexible Design
Components are designed rather statically. While developers

implement components they mainly think that they need to

provide components which fit into one specific assembly. Hence,

Figure 5: SKEMMI Eclipse Plugin, Simple Multimodal Music Player Design

248

it is hard to exchange, or to extend compositions, as interfaces

are being designed too close.

Not enough Influence of Non-Developers
As a matter of the second difficulty, interaction designers are

restricted to explore user experience of multimodal interaction,

as strongly fixed compositions put constraints on experimenting

more intensively alternative application set-ups or multimodal

interaction styles respectively. Furthermore, interaction designers

and the rest of non-developers are insufficiently equipped for

contributing to the software design to make the need for more

alternatives, dynamic setup clear to component developers.

Loosing Design Solutions
Last but not least, tracking things is hard. Conceptual solutions

are usually kept in textual and graphical documents. The design

process is an ongoing stream where all team members

collaborate to improve the design. Despite the fact that during

the design process a lot of issues are discussed and solutions

proposed, it happens the latter are disregarded when translating

the design concept into software.

Due to these difficulties, in most cases, the interaction design

concept is not properly being implemented, and as a consequence

interaction designers cannot easily produce enhanced user

experience of multimodal interaction. To narrow down this gap

we argue for an approach that balances the needs of both

disciplines with the challenge of improving the way an

‗interaction design‘-concept is actually translated into a set of

software components.

4.1. Motivation for SKEMMI
The limitations highlighted above have motivated us in providing

an all-in-one prototyping workbench for multimodal applications

development. Our approach differs on the following main

features not addressed by OIDE:

Support for components development
Developing innovative interactions components calls for the need

to be able to implement, refine and package those components.

We hypothesize that having an integrated tool that allow to

(informally but effectively) specify, develop, and deploy

components is a feature that can speed up the learning and

development process.

Support of multi-level design
Supporting basic cooperation of users with different backgrounds

taking part in the realization of a multimodal application can also

be beneficial for the quality of delivered application.

Support for reusability
Plugging off-the-shelf component is not a trivial task because

most of the time their interface, behavior and data need to be

adapted. When evaluating OIDE, we have encountered the

problem of interface incompatibility, thus limiting reusability of

components. SKEMMI will leverage the data conversion,

synchronization, and communication patterns features provided

by the OpenInterface Kernel and also provides syntactic sugar

allowing for better abstraction from technical configuration when

connecting components.

Support for documentation
Although composing a technical assembly is an important

feature, we have found it mandatory to also be able to easily

document, export, and distribute composed applications.

Runtime and Debug
SKEMMI will provide the ability to run a designed pipeline and

graphically reconfigure the system at runtime. Basic debugging

will also be natively supported through visual tools embedded

within the GUI.

In the following section we present the implementation of our

approach that tries to consider constraints of both stakeholders—

interaction designers and software engineers— in a cooperative

and designer-centered approach so as to minimize the

shortcomings highlighted here above.

4.2. Cooperative Design
We looked into the problem of supporting different stakeholders

to achieve better collaboration while designing interactive

multimodal systems in an ongoing, complex design process, thus

resulting in better application design and implementation. Our

aim is not to provide a complex and fully-featured collaborative

environment but rather to provide a simple common working

base that enables various actors (e.g., various stakeholders

having different viewpoints or backgrounds). In our simplistic

approach we hypothesize the use of annotations (text and audio),

changes tracking, multi-layered view of a single design process

and support for informal interactions prototyping to be sufficient

to meet our needs, while also assuring an infrastructure for future

extension.

Multi-level Design
To help users abstract from implementation details or dive into

them at their best convenience, we provide the ability to

seamlessly navigate through three design-levels by the use of a

three-level scale.

The common representation of components is to depict them,

their ports, and each linking among input and output ports.

However, this information may be superfluous in a first overall

design sketch. For example, when initially designing

interactions, less emphasis is put on ports and types. Basically

required components are elicited, logical links are drawn

between them, notes and documentations are added to describe

the overall concept.

 To support this ―brainstorming‖ design phase we provide a

―workflow‖ level prospect that shows only components,

conceptual links among them, and annotations as illustrated by

the top screenshot of Figure 6.This level can be further refined

to an actual implementation level (center screenshot of Figure

6). The same workflow is augmented with technical details such

as ports, data types, and etc. Conceptual links can be instantiated

to apply the mapping between design concept, notes, requirement

and available components is made at this stage. The third level

gets (visually) rid of all the interconnections and focuses on a

single component design. It also allows redefining a component

interface at this stage if it does not suit the designer requirements

as explained in the next section.

249

Component Tailoring
Because of the explorative approach while designing interactions

pipelines from off-the-shelf components developed by third-

parties, it is quite common that a component interface does not

match the designer needs. The editing canvas provides the ability

to redesign (change ports attributes and parameters, delete or

create port) component interfaces. It‘s a collaborative activity in

the sense that the redesign is done in an informal way by non-

programmers and further directly translated by technical users in

programming items (i.e. code skeletons and CIDL descriptors)

using the code generator.

Changes Tracking
To better support multiple users working on the same design, we

define a profile for each actors with an assigned color code. By

doing so, changes applied by each participants can be tracked

and highlighted. Basic history of designed pipeline will be

supported through the use of the Eclipse version control plugin

features.

4.3. Interaction Design

Dataflow design
The basic technique for designing interaction is the well-known

dataflow approach where an application designer will drop boxes

and connect output to input ports.

This task can be cumbersome if exchanged data types are

incompatible, external behavior of components is non-

documented, and if there is insufficient documentation about

components interface. To ease this process, implicit data

conversion is performed between compatible data types and

documentation of component can be examined directly from

within the design canvas.

This composition technique requires technical knowledge of

components interface and behavior while allowing for fine-

grained tuning of interaction. To help hiding low levels

implementation details from non-programmers, specific

components are integrated so as to support techniques such as

design-by-demonstration [20].

Design-by-example
Components integrated within the platform and editor allow

performing a design-by-demonstration technique. Using this

method a designer can visually inspect data, record desired

behavior (e.g. complex gestures) as interaction patterns and

further evaluate their effect at runtime. Signals inspector such as

oscilloscope, image processing library such as OpenCV, pattern

matching algorithm (Dynamic Time Warping [9], five degrees-of-

freedom gesture recognition) are integrated and ready-to-use to

support that informal design technique. Moreover, taking

advantage of the underlying platform modularity and

heterogeneous components support, further algorithms and tools

can be integrated to help in semi-automatically authoring

advanced multimodal behavior.

This section has presented an Eclipse-based end-user interface to

the OpenInterface Kernel. SKEMMI editor provides dataflow

editing features while also trying to put more emphasis on

informal prototyping through machine learning components and

on the collaboration of different actors –designers and

programmers – within the complex iterative design process. The

next section illustrates the different stages involved in the use of

the proposed multimodal workbench.

5. MULTIMODAL WORKBENCH USAGE

SCENARIO
Overview
The OpenInterface Kernel is implemented in C++ to optimize

performance, as well as to benefit from existing C++ bindings

available for other languages. This allows us to provide a

portable platform capable of integrating heterogeneous software

in a single application. An overview of how each tools of the

workbench interact with others is illustrated by Figure 7, where

each component is registered into the OpenInterface platform

using the CIDL. The platform then automatically generates

proxies to perform the actual integration. Using SKEMMI or the

kernel API, users can edit the components properties and

Figure 6: Three-level view of wiimote controlled multimodal

music player within SKEMMI. Top: workflow; Middle:

Dataflow; Bottom component

250

compose an execution pipeline of a multimodal application. This

execution pipeline is either interpreted at once by the kernel, or

dynamically built by the application.

The use of the OpenInterface platform requires the following two

steps:

1. Integrate new modalities, devices, and functional cores (i.e.

components) into the platform. The software can be provided

in any supported programming languages (C/C++, Java,

Matlab and .NET; extensions can be easily added), and semi-

automatic tools are provided to ease that process.

2. Use the graphical interface to dynamically or statically

combine components, and generate a running application.

External applications can also control the pipeline by using

the provided multi-language API.

5.1. Integrate Component
The very first step involved in using our software workbench is

integrating components within the platform. This process is

straightforward, documented, and a dedicated Eclipse plugin is

provided to assist the user in achieving this task. One could

either integrate existing code or generate new components

skeleton.

Integrating Existing code
The Component Builder is the Eclipse platform plugin which

provides the following features:

 CIDL generation from source code.

 Component packaging and deployment.

The user opens the desired source file (which represents the

interface of the component) within the editor and can

interactively modify the generated corresponding XML

description. The user can directly edit code within the editor by

either modifying non-compliant interface or removing undesired

functions. Currently only C/C++ and Java source code parsing

are supported. Figure 8 illustrates the Component Builder view

within Eclipse: Area A displays the projects, area B shows the

hierarchical structure of the generated XML and area C presents

both the source code and the corresponding CIDL.

Our tests with users, having little to no experience with the

platform, have shown that after reading the provided tutorials, an

average of one hour is required to manually integrate and test a

new component.

Designing New Components
Alternatively, a new component interface can be designed from

within the design editor. In that case the user creates a new

component and specifies the input/output ports and parameters of

the designed component. Documentation can also be attached to

the design. The corresponding CIDL descriptors are then

generated along with code skeletons for further implementation

by programmers.

5.2. Compose Assembly
Figure 5 shows a typical interactive session in the design-time

visual editor. While the left pane of the visual editor contains a

hierarchical view of the project being built, the right pane

contains in different tabs respectively the integrated components,

the adapters, and the annotations elements. Using a drag and

drop technique, users can initiate the conceptual assembly of the

desired components (Figure 6, top) and further refine the

pipeline to actually implement the desired behavior (Figure 6,

middle).

The application illustrated in Figure 6 is a Wiimote-controlled

multimodal music player implemented using only open-source

software from the web. It provides end users with the ability to

navigate through songs and control the volume level in a

multimodal way including graphical manipulation and gesture.

To implement advanced gesture, we further added a gesture

recognizer component to the canvas; connected its input to the

Wiimote accelerometer output and its output to the album

navigation graphical interface. We then execute the application

for learning and recognition phase.

Figure 8: Component Builder Plugin

Figure 7: Multimodal Application Development

Using the OpenInterface Platform Workbench

251

5.3. Run and Debug
Designed applications are directly executed for evaluation from

the design environment (or by applications using the runtime

API). Figure 5 shows a full view of the editor, the top toolbar

contains buttons to run the pipeline, export the PDCL for manual

modification or re-install (generate and compile proxies of)

modified components.

Pipelines can be dynamically modified and reconfigured at

runtime from either the editor or with the API. From the editor,

the user can visually rewire connections, and reconfigure

components. Simple debugging is done by wiring selected

outputs to data visualizer components embedded in SKEMMI .

6. EVALUATION
In the following parts we present the results of informal

evaluations - construction of real applications by third-parties- of

the main software tools: OpenInterface Platform and SKEMMI

design editor.

6.1. OpenInterface Platform Applications
The OpenInterface Platform has been used, and is being used in

several research projects for successfully designing, prototyping,

and implementing multimodal applications. A selection of them

is described below:

Multimodal Driving Simulator
The runtime platform was first used at eNTERFACE [7], and

served as backbone of a multimodal driver simulator [1] for

combining the driver state based on video data (e.g., facial

expression, head movement, eye tracking) and multimodal input.

A first evaluation of the runtime platform was also conducted

and promising results such as 5% of memory overhead and 3% of

CPU overhead were measured.

MedicalStudio
MedicalStudio [25] is a composable, open-source, and easily

evolvable cross-platform framework that supports surgical

planning and intra-operative guidance with augmented

interactions. It is designed to integrate the whole computer aided

surgery process in which both researchers and clinicians

participate. OpenInterface Kernel has been used as runtime

integration platform to study speech and marker detection

interaction for 3D object manipulation

UsiXML Interpreter
InterpiXML is a run-time Java rendering engine for UsiXML-

specified (www.usixml.org) UIs. It renders a UsiXML UI and

incorporates additional interaction modalities such as voice

recognition, hand gesture recognition based on video camera, and

pen-based interaction. Evaluation experiments, involving a group

of 14 users, for comparing the usability of the interpreter with

and without OpenInterface has shown equivalent performances

(time to perform a task, fulfillment of a task and user evaluation)

for both implementations on one hand while the additional

flexibility provided by the platform has been demonstrated on the

other hand for quickly adding and exchanging modalities with

little further programming efforts.

OpenInterface Project
The OI Project (www.oi-project.org) has developed several

demonstrations systems, including multimodal map navigation

and a mobile multimodal game. A typical setup for the latter

involved a game running on a mobile phone, while the different

interaction modalities are running within the platform on a PC.

This configuration allowed investigating interaction techniques

using: speech commands, 3D gesture commands, and also

innovative interaction devices. The runtime kernel has been used

with the project dedicated development environment, OIDE.

Image Processing Benchmarking
The platform and SKEMMI editors are been evaluated as tools

for benchmarking image processing algorithms (for interaction)

in real-time. Figure 9 illustrates the live application on video

frames of a motion templates algorithm to identify pixels motion.

OIDE has also been evaluated in this context and didn‘t meet our

requirements due to limited support of the kernel features and

usability issues. In this high-computational context, our

workbench has displayed realistic performances at runtime (low

cpu overhead) and design time (fast composition of pipelines).

6.2. SKEMMI Editor
A first proof-of-concept version of SKEMMI has been evaluated

using a group of six experts (programmers, application

designers). The outcome allowed us to validate and further refine

some features of our approach in bridging the gap between

designers and programmers of multimodal interactions: The

ability to navigate through three different levels of the same

design, basic changes tracking through coloring and the

documentation (text, voice) features were widely accepted.

Later informal evaluation of the editor runtime mode emphasized

the role of the visual authoring environment (probes,

oscilloscope, etc.), especially when designing

clutching/declutching mechanisms by combination of signal

processing operations. It however highlighted poor support of

advanced debugging (breakpoints, step-by-step execution, etc.).

6.3. Component Database
Figure 10 lists a selection of software currently integrated in the

platform component database. The components are highly

reusable (inside or outside the platform) and come from various

projects and experiments.

Figure 9: Image Processing Benchmarking with Motion

Estimation With Strong Illumination Change .

252

The database is already well furnished in input devices, and a

large number of combinations could be prototyped in order to

study new interactions. It also highlights the lack of output

devices and interaction techniques. This database is freely

available online.

7. CONCLUSION AND FUTURE WORK
The implementation of a multimodal application design suffers

from the lack of tools supporting the whole process. There are

numerous works targeting different part of the overall complex

scheme. We have presented the OpenInterface Kernel runtime

platform, which enables reuse of existing components to

iteratively design and build a multimodal system with minimal

programming effort. We also presented SKEMMI, an extensible

design tool built on top of the runtime kernel, which provide

feature such as cooperative multi-level application design and

component tailoring. Direct manipulation and design-by-

demonstration techniques are respectively natively supported by

the graphical editor and by dedicated components integrated in

the database.

The complete workbench (platform, editors and components) is

available for download as open-source software from

https://forge.openinterface.org. Moreover, the kernel API and

modular approach allows it to be interfaced with any kind of

front-end application which can output XML descriptions. We

have successfully tested integration with Pure Data; in the near

future we will investigate the integration of the runtime platform

within solutions such as ICON and EyesWeb [3].

Future work will also focus on embedding interaction design

techniques like [10][15], usability assessment tools, input

devices performance evaluation tools like [22], and on

conducting in-depth formal evaluation of the whole workbench.

8. ACKNOWLEDGMENTS
European FP6 SIMILAR Network of Excellence, European FP6-

35182 OpenInterface STREP, 3D MEDIA Walloon project. We

thank all partners of the OpenInterface STREP Project. We also

thank Cyril Carincotte for his early comments, evaluation and

feedback on our workbench.

9. REFERENCES
[1] Benoit, A., Bonnaud, L., Caplier, A., Damousis, I.,

Tzovaras, D., Jourde, E., Nigay, L., Serrano M. and Lawson,

J-Y. 2006. Multimodal Signal Processing and Interaction for

a Driving Simulation: Component-based Architecture.

Journal on Multimodal User Interfaces,1, 1,49-58.

[2] Bouchet, J., Nigay, L. (2004). ICARE: A Component-Based

Approach for the Design and Development of Multimodal

Interfaces, Extended Abstracts CHI’04, ACM, pp. 1325-

1328.

[3] Camurri, A., Ricchetti, M., and Trocca, R. 1999. EyesWeb -

toward gesture and affect recognition in dance/music

interactive systems, Proc. IEEE Multimedia Systems '99,

Firenze, Italy, June 1999.

[4] Cohen, P. R., Johnston, M., McGee, D., Oviatt, S., Pittman,

J., Smith, I., Chen, L., and Clow, J. 1997. QuickSet:

multimodal interaction for distributed applications, Proc. of

MULTIMEDIA '97. ACM Press, pp. 31-40.

[5] Coutaz, J. Nigay, L. Salber, D. Blandford, A. May, J. and

Young, R. (1995), Four Easy Pieces for Assessing the

Usability of Multimodal in Interaction the CARE Properties,

Proc.of Interact' 95, pp. 115-120.

[6] Dragicevic P. and Fekete J-D. Input Device Selection and

Interaction Configuration with ICON: Joint proc. of

IHM'01-HCI'01. Springer Verlag, pp 543-558.

[7] eNTERFACE Workshops, http://www.enterface.net/

[8] Gray, P., Ramsay, A., Serrano, M. A demonstration of the

OpenInterface Interaction Development Environment.

UIST'07 Adj. Proc.

[9] H. Sakoe, S. Chiba, Dynamic programming algorithm

optimization for spoken word recognition. In IEEE

Transactions on Acoustics, Speech, and Signal Processing

26 (1) (1978) 43-49.

[10] Hartmann, B., Abdulla, L., Mittal, M., and Klemmer, S. R.

2007. Authoring sensor-based interactions by demonstration

with direct manipulation and pattern recognition. Proc. of

CHI '07. ACM Press, 145-154.

[11] Hartmann, B., Klemmer, S. R., Bernstein, M., Abdulla, L.,

Burr, B., Robinson-Mosher, A., and Gee, J. 2006. Reflective

physical prototyping through integrated design, test, and

analysis. Proc. of UIST '06.

[12] Kato, H., Billinghurst, M. (1999) Marker Tracking and

HMD Calibration for a video-based Augmented Reality

Conferencing System. Proc. of IWAR'99.

[13] Lawson, J.-Y., Vanderdonckt, J., Macq, B. Rapid

Prototyping of Multimodal Interactive Applications Based

on Off-The-Shelf Heterogeneous Components. UIST'08

Adjunct. Proc.

[14] Lawson, J-Y., 2006. OpenInterface Description Languages

Specification. Technical report, 2006:

http://www.openinterface.org/platform/documentation

Figure 10: Component Database, a Selection of

Components

253

https://forge.openinterface.org/
http://www.enterface.net/
http://www.openinterface.org/platform/documentation

[15] Li, Y. and Landay, J. A. 2005. Informal prototyping of

continuous graphical interactions by demonstration, Proc. of

UIST '05. ACM Press, pp. 221-230.

[16] Martin, J. C., TYCOON: Theoretical Framework and

Software Tools for Multimodal Interfaces, Intelligence and

Multimodality in Multimedia Interfaces, AAAI Press, 1997.

[17] Max/MSP, http://www.cycling74.com

[18] Maynes-Aminzade, D., Winograd, T., and Igarashi, T.

(2007). Eyepatch: prototyping camera-based interaction

through Examples, Proc. of UIST’07, ACM Press, pp. 33-

42.

[19] Mehta, N. R., Medvidovic, N., and Phadke, S. 2000.

Towards a taxonomy of software connectors. Proc. of ICSE

'00. ACM Press, pp. 178-187.

[20] Merrill, D. and Paradiso, J. A Personalization, Expressivity,

and Learnability of an Implicit Mapping Strategy for

Physical Interfaces, Proc. of CHI'05 ACM Press, pp. 2152—

2161.

[21] Puckette, M., 1996. "Pure Data: another integrated

computer music environment.", Proc. of the Second

Intercollege Computer Music Concerts, Tachikawa, pp. 37-

41

[22] Schedlbauer, M. J. An extensible platform for the

interactive exploration of Fitts' Law and related movement

time models. In CHI '07 Extended Abstracts on Human

Factors in Computing Systems. ACM Press, pp. 2633-2638.

[23] Shaw, M. and Garlan, D. Software Architecture:

Perspectives on an Emerging Discipline. Prentice-Hall,

1996.

[24] Sinha, A. K. and Landay, J. A. 2003. Capturing user tests in

a multimodal, multidevice informal prototyping tool. Proc.

of ICMI '03, ACM Press, pp. 117-124.

[25] Trevisan, Daniela G.; Nicolas, Vincent; Macq, Benoit;

NEDEL, Luciana P. MedicalStudio: a medical component-

based framework, Proc of.WIM '07.

[26] Vybornova, O., Mendonça, H., Lawson, J.Y., Macq, B.

High Level Data Fusion on a Multimodal Interactive

Applications Platform. Proc of ISM’08.

[27] Web Services Description Language (WSDL),

http://www.w3.org/TR/wsdl.

254

http://www.cycling74.com/
http://www.w3.org/TR/wsdl

